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In this communication we report the use of stopped-flow
Fourier transform infrared (SF-FTIR) spectroscopy to monitor the
binding chemistry of NO to cytochromec′ (cyt c′) from
Alcaligenes xylosoxidans.NO plays a role in a diverse range of
physiological processes in higher organisms such as the immune
response to tumor cells, vasodilatation, and neuronal synaptic
transmission.1 An important element in these processes is the heme
enzyme soluble guanylate cyclase (sGC) which responds to
changes in [NO]. Cytochromesc′ are small (27.2 kD per dimer)
microbial proteins which are known to share unusual spectroscopic
and ligand binding properties with sGC.2,3 Unlike other high-
spin hemoproteins, for example, both proteins form stable
complexes with NO and CO but not O2. In addition, the hemes
are axially coordinated only to a single histidine ligand, resulting
in nominally five-coordinate iron centers.2,4 Interest in cytc′ has
recently been stimulated by a crystallographic study of theA.
xylosoxidansprotein at 1.35 Å resolution which revealed a novel
ability of CO and NO to bind to opposite faces of the heme.4 CO
forms a six-coordinate (6c-CO) adduct in which the CO binds to
the Fe from the distal pocket side. By contrast, the crystal structure
of the NO adduct shows a five-coordinate (5c-NO) complex with
the NO adopting an unprecedented proximal Fe-coordination,
displacing the proximal His-120 and leaving the distal side of
the heme unligated. The mechanism of formation of this novel
coordination is clearly of great interest, not least because it may
account for ligand-discrimination and signal transduction in heme-
based gas sensor proteins such as sGC.

The SF-FTIR experiments employed a two-syringe drive
system. One syringe contained ferrous cytc′, and the other
contained buffer or a buffered solution of14NO or 15NO.5 The
infrared spectrum of ferrous cytc′ in the absence of NO is
dominated by a broad envelope of polypeptide amide-I vibrations
centered at 1645 cm-1 (Figure 1a). Within 200 ms of mixing the
protein (100µM after mixing) with14NO (150µM) a number of
peaks and troughs are apparent in the “14NO + cyt c′ minuscyt
c′” difference spectrum (Figure 1b).11 Only the major peak, at
1625 cm-1, is sensitive to isotopic substitution with15NO, with
a shift of 29 cm-1 to 1596 cm-1 (compare Figure 1, b and c),
giving a single characteristic derivative in the “14NO + cyt c′
minus15NO + cyt c′” difference spectrum (Figure 1d). We assign
this band to a six-coordinate heme-NO complex (6c-NO), as its

frequency is within the reported 1633-1607 cm-1 range,12,13 the
isotope shift is appropriate,14 and its relatively sharp half-height
line width of 8.0 cm-1 is consistent with other protein heme-
NO complexes.7,12,15 At longer times this band is replaced by a
more complex spectrum (Figure, 1, b-d). The isotope difference
data (Figure 1d) now reveal a complex line shape, which we
assign to multiple conformers of 5c-NO. However, it is not
possible to fit this spectrum with a simple combination of
derivatives with the expected 30 cm-1 isotope shift. Since this
line shape varied between experiments, we attribute this to
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Figure 1. The reaction of ferrousA. xylosoxidanscyt c′ with NO
monitored by SF-FTIR spectroscopy. (a) Absorption spectrum of ferrous
cyt c′ in the absence of NO. (b) Time-dependent difference spectra of
14NO + cyt c′ - cyt c′ with no NO. (c) As (b) but using15NO. (d) Time-
dependent difference spectra of14NO + cyt c′ - 15NO + cyt c′. Data
were recorded: 0.15-1.17 s (s); 1.79-2.81 s (- ‚- ‚ -‚) and 17.3-
70.7 s (‚‚‚) after mixing.
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apparently random differences in conformer distribution.16 Given
this premise, the simplest of many possible analyses comprise
three 5c-NO conformers withν(NdO) stretches in the region of
1678, 1666, and 1654 cm-1,17 consistent with the 1703-1660
cm-1 range thus far reported for 5c-NO.12,13 Our assignment of
these bands to multiple conformers agrees with the crystal
structure, which shows two distinct orientations of NO bound to
the heme.4

Time courses measured for theν(NdO) bands in Figure 1d at
1596 cm-1 (6c-15NO) and 1656 cm-1 (5c-14NO) clearly demon-
strate the biphasic reaction (Figure 2). The transient 6c-NO
reaches maximum intensity at∼0.7 s and 5c-NO is fully formed
within 12 s. No intermediates are apparent in the 6c-NOf 5c-
NO reaction as the spectra show clear isosbestic points (Figure
1). Surprisingly, the rates of both phases increase on increasing
[NO]. In initial experiments using 300µM NO only the second
phase was seen clearly and this was complete within 3.5 s, while
with 1 mM NO both phases were too fast to readily observe.18

Preliminary UV-vis stopped-flow measurements suggest a first-
order [NO] dependence for both phases,19 and consistent with

this, the IR data can be fitted to [NO]-dependent rate constants
of 36 ( 10 and 8.4( 0.6 mM-1 s-1 (solid line in Figure 2). We
note a similar [NO] dependence, and a biphasic 6c-NOf 5c-
NO reaction has been observed by kinetic studies on NO binding
to sGC.20 The implication is that both 6c-NO and 5c-NO
separately require NO binding to form. We propose a mechanism
in which NO first binds to the vacant heme distal site forming
6c-NO, thus weakening the bond between the heme iron and the
proximal His-120. A second NO then binds to the heme iron on
the proximal side, causing both the proximal histidine and distal
NO to dissociate, leaving 5c-NO.21

The isotopically insensitive time-dependent features of Figure
1, b and c deserve some comment as these arise from the changes
in the protein matrix and heme cofactor. Analyses show similar
time dependencies to those in Figure 2. For example, a small
band at 1698 cm-1 appears and disappears with the 6c-NO
complex. That at 1685 cm-1 grows with 6c-NO and then remains
during the conversion to 5c-NO. These occur in the polypeptide
amide-I region (1700-1610 cm-1) and probably reflect changes
in the protein backbone. Most interesting are the peak at 1575
cm-1 and the troughs at 1593 and 1658 cm-1, which track the
formation of 5c-NO from 6c-NO.22 These bands have a number
of possible assignments. For example, infrared-active heme ring
modes absorb at energies below∼1625 cm-1.23 Alternatively, they
could arise from deprotonation of a heme propionate, the 1658
cm-1 trough being theν(CdO) of the protonated form and the
1575 cm-1 peak being aν(COO-)asstretch,23,24but such chemistry
seems unlikely at pD 9.4. Another possibility is Arg-124. Arginine
in D2O absorbs between 1608 and 1577 cm-1, usually as a
doublet.25 The crystal structure data show that on formation of
5c-NO this residue rotates to stack against the heme plane, where
it can hydrogen-bond to one conformer of the bound NO.4

However, the most pronounced change in the 5c-NO structure is
the displacement and dissociation from the heme of the proximal
His-120. Theν(CdC) mode of histidine also absorbs in this
region,25 albeit with lower reported intensities than these bands.26

In this interpretation, the trough at 1593 cm-1 arises from metal
bound His-120, and the peak at 1575 cm-1 from the displaced
form. The 1658 cm-1 band could then arise from associated
amide-I changes. Clearly, a precise assignment requires a more
complete study.

In summary, SF-FTIR has shown that forA. xylosoxidanscyt
c′, formation of the novel proximally bound 5c-NO complex
proceeds via a 6c-NO intermediate. Preliminary kinetic data
suggest that the formation of both species separately require NO
binding. This novel chemistry may be the mechanistic key for
NO-sensing heme enzymes.
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Figure 2. Time dependence of the cytc′ + NO isotope difference SF-
FTIR spectra of Figure 1d, determined by integrating well-separated
peaks: (O) 6c-15NO (1596 cm-1); (b) 5c-14NO (1656 cm-1). The solid
lines are calculated time courses (see text).
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